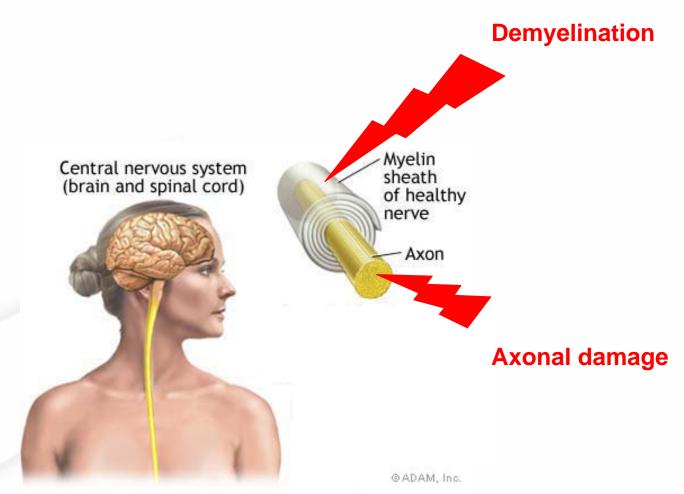

Sigurd K. Thoresen Foundation Seminar, August 26, 2008

Novel variants in multiple sclerosis

Human DNA sequence, IMSGC 2008

Åslaug R. Lorentzen MD

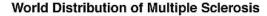
Department of Neurology,
Faculty Division
Ullevål University Hospital,
and
Institute of Immunology,
Rikshospitalet University Hospital

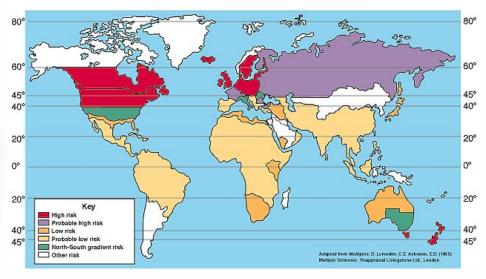


Multiple sclerosis

Inflammation (relapsing-remitting MS)

Degeneration (progressive MS)



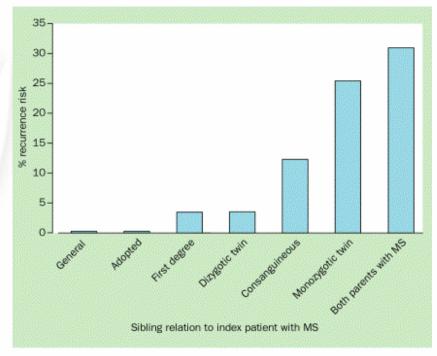

Environmental influences in MS

North-south gradient

Oslo: 170/ 100 000 (Smestad et al. 2007)

- Infectious agents?
 - EBV? (Serafini et al. 2007)

- Importance of life style, diet, sun exposure, climate?
 - Vitamin D? (Ascherio, 2007)
 - Smoking? (Ascherio, 2008)

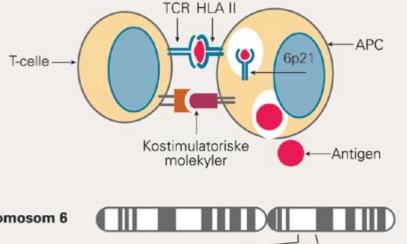


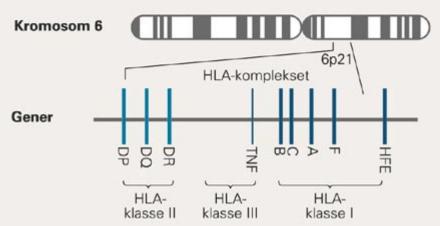
Genetic influences: Familial clustering

- There is a genetic basis for familial aggregation in MS
- λ_s = the risk seen in sibling / general population

ln MS = 15-20

Dyment et al. 2004

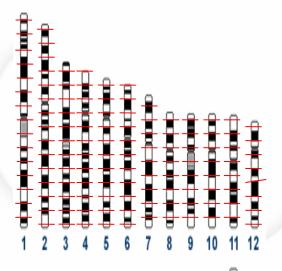

The early success - the HLA association


Strongest genetic risk

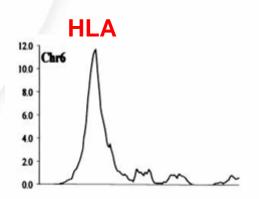
(Jersild et al. 1972) (Naito et al. 1972)

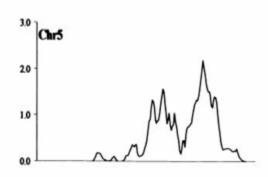
DQB1*0602-DRB1*1501

 20-60 % of the genetic susceptibility



KM Myhr & HF Harbo, 2003



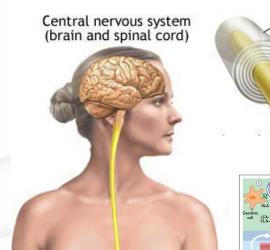

Up and down a rollercoaster

13 14 15 16 17 18 19 20 21 22 X Y

- Linkage screens
 - Collaboration studies (GAMES, 1996-2003)
 - High density linkage screen (Sawcer et al. 2005)

Candidate gene approach - Where to start? Neuroprotective and

Myelin


sheath

of healthy nerve

Axon

Myelin components

PLP1, MAG, MOG

Copyright 1997-2008, A.D.A.M.

Neuroprotective and growth factors

TGFB1/2, BAX, BCL2, p53, ERBB, ApoE

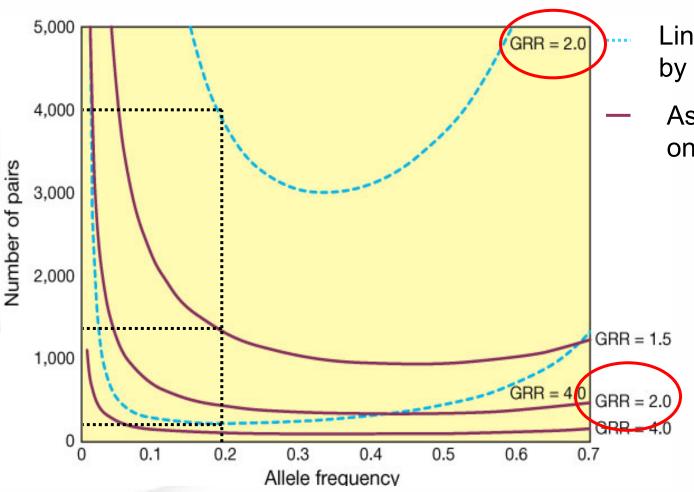
Cytokines and immune molecules

HLA, TCR, Interleukin and receptors, STAT, CTLA4, SH2D2A, PTPN22, MPO, ICAM-1

Holmøy & Hestvik 2008

Why so hard to find susceptibility genes in MS?

Genes of modest risk


- Common disease / common variants
 - 20-100 genes (1 risk 1.2-1.5)

- Common disease / rare variants
 - -100 1000 (1 risk 10-20)

The importance of large sample sizes

Linkage analysis by use of sib-pairs

Association based on case-controls

<u>Genotypic</u> <u>Relative Risk;</u>

The risk of disease for one genotype versus another at a locus

The NEW ENGLAND JOURNAL of MEDICINE

29th July 2007

Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study

The International Multiple Sclerosis Genetics Consortium*

- 334,923 SNPs
- 931 TRIOs
- Replication: 609 TRIOs, 2322 cases and 789 controls

Top non-HLA results in MS GWA screen

Gene (NCBI ID)	Chromosomal position	Biological function(s)	GWA screen	Validation		Overall	
			Family*	Case-control ⁵	$Combined^{\parallel}$	Combined ¹	Odds ratio
IL2RA, interleukin 2 receptor, alpha (3559)	10p15	Apoptosis, immune response	1 x 10 ⁻³	1 x 10 ⁻³	5 x 10 ⁻⁴	3 x 10 ⁻⁸	1.25
IL7R, interleukin 7 receptor (16197)	5p13	Cell survival, immune response	6 x 10 ⁻³	2 x 10 ⁻²	3 x 10 ⁻⁵	3 x 10 ⁻⁷	1.18
CLEC16A, C-type lectin domain family 16, A (23274)	16p13	Sugar-binding, C-type lectin	3 x 10 ⁻²	7 x 10 ⁻³	2 x 10 ⁻⁵	4 x 10 ⁻⁶	1.14
RPL5, ribosomal protein L5 (6125)	1p22	Ribosomal protein, chaperone for the 5S rRNA	4 x 10 ⁻⁴	2 x 10 ⁻⁴	9 x 10 ⁻⁴	8 x 10 ⁻⁶	1.15
DBC1, deleted in bladder cancer 1 (1620)	9q33	Cell-cycle arrest, apoptosis	1 x 10 ⁻⁴	2 x 10 ⁻⁴	1 x 10 ⁻³	8 x 10 ⁻⁶	1.17
CD58, lymphocyte function- associated antigen 3 (965)	1p13	Cell-cell adhesion, immune response	1 x 10 ⁻³	3 x 10 ⁻⁵	2 x10 ⁻³	2 x 10 ⁻⁵	1.24
ALK, anaplastic lymphoma receptor tyrosine kinase (238)	2p23	Tyrosine kinase receptor, brain development	1 × 10 ⁻⁴	1 x 10 ⁻²	3 x 10 ⁻³	7 x 10 ⁻⁵	1.37
FAM69A, family with sequence similarity 69, A (388650)	1p22	Protein binding	2 x 10 ⁻⁵	2 x 10 ⁻²	2 x 10 ⁻³	9 x 10 ⁻⁵	1.12

^{*}Listed are the eight non-MHC SNPs showing the highest statistical evidence of association after replication as reported by the International Multiple Sclerosis Genetics. Consortium. For additional results, consult REF 6. *931 MS trios. *931 cases, 2,431 controls. *1609 MS trios, 2,322 MS cases, 2,987 controls. *1,540 MS trios, 2,322 MS cases, 5,418 controls. GWA, genome-wide association; MHC, major histocompatibility complex; MS, multiple sclerosis; NCBI, National Center for Biotechnology Information.

HLA association (6p21) (p=10⁻⁸¹, OR= 1.99) Oksenberg et al. Review 2008

Top non-MHC results in MS GWA screen

Gene (NCBI ID)	Chromosomal position	Biological function(s)	GWA screen	Validation		Overall	
			Family*	Case-control [§]	Combined	Combined ¹	Odds ratio
IL2RA, interleukin 2 receptor, alpha (3559)	10p15	Apoptosis, immune response	1 x 10 ⁻³	1 x 10 ⁻³	5 x 10 ⁻⁴	3 x 10 ⁻⁸	1.25
IL7R, interleukin 7 receptor (16197)	5p13	Cell survival, immune response	6 x 10 ⁻³	2 x 10 ⁻²	3 x 10 ⁻⁵	3 x 10 ⁻⁷	1.18
CLEC16A, C-type lectin domain family 16, A (23274)	16p13	Sugar-binding, C-type lectin	3 x 10 ⁻²	7 x 10 ⁻³	2 x 10 ⁻⁵	4 x 10 ⁻⁶	1.14
RPL5, ribosomal protein L5 (6125)	1p22	Ribosomal protein, chaperone for the 5S rRNA	4 x 10 ⁻⁴	2 x 10 ⁻⁴	9 x 10 ⁻⁴	8×10^{-6}	1.15
DBC1, deleted in bladder cancer 1 (1620)	9q33	Cell-cycle arrest, apoptosis	1 x 10 ⁻⁴	2 x 10 ⁻⁴	1 x 10 ⁻³	8 x 10 ⁻⁶	1.17
CD58, lymphocyte function- associated antigen 3 (965)	1p13	Cell-cell adhesion, immune response	1 x 10 ⁻³	3 x 10 ⁻⁵	2 x10 ⁻³	2 x 10 ⁻⁵	1.24
ALK, anaplastic lymphoma receptor tyrosine kinase (238)	2p23	Tyrosine kinase receptor, brain development	1 x 10 ⁻⁴	1 x 10 ⁻²	3×10^{-3}	7 x 10 ⁻⁵	1.37
FAM69A, family with sequence similarity 69, A (388650)	1p22	Protein binding	2 x 10 ⁻⁵	2 x 10 ⁻²	2 x 10 ⁻³	9 x 10 ⁻⁵	1.12

^{*}Listed are the eight non-MHC SNPs showing the highest statistical evidence of association after replication as reported by the International Multiple Sclerosis Genetics Consortium. For additional results, consult REF 6. *931 MS trios. *931 cases, 2,431 controls. *1609 MS trios, 2,322 MS cases, 2,987 controls. *1,540 MS trios, 2,322 MS cases, 5,418 controls. GWA, genome-wide association; MHC, major histocompatibility complex; MS, multiple sclerosis; NCBI, National Center for Biotechnology Information.

HLA association (6p21) (p=10⁻⁸¹, OR= 1.99) Oksenberg et al. Review 2008

LETTERS

29th July 2007

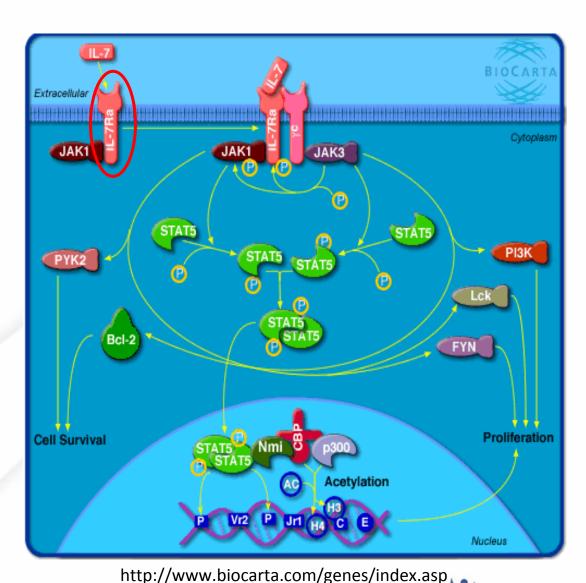
Variation in interleukin 7 receptor α chain (*IL7R*) influences risk of multiple sclerosis

Frida Lundmark¹, Kristina Duvefelt², Ellen Iacobaeus³, Ingrid Kockum^{1,3}, Erik Wallström³, Mohsen Khademi³, Annette Oturai⁴, Lars P Ryder⁵, Janna Saarela⁶, Hanne F Harbo^{7,8}, Elisabeth G Celius⁸, Hugh Salter⁹, Tomas Olsson³ & Jan Hillert¹

Interleukin 7 receptor α chain (*IL7R*) shows allelic and functional association with multiple sclerosis

Simon G Gregory^{1,9}, Silke Schmidt^{1,9}, Puneet Seth², Jorge R Oksenberg³, John Hart¹, Angela Prokop¹, Stacy J Caillier³, Maria Ban⁴, An Goris⁵, Lisa F Barcellos⁶, Robin Lincoln³, Jacob L McCauley⁷, Stephen J Sawcer⁴, D A S Compston⁴, Benedicte Dubois⁵, Stephen L Hauser³, Mariano A Garcia-Blanco², Margaret A Pericak-Vance⁸ & Jonathan L Haines⁷, for the Multiple Sclerosis Genetics Group

The Interleukin-7 receptor gene

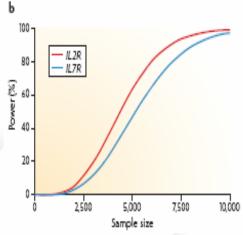

- IL7Rgene:
 - Located at chromosome 5q13 (total 8 exons)
 - Causal SNP, rs6897932 (C/T), a ns coding SNP(T244I) located in exon 6
- A transmembrane protein, expressed in T cells
- Alternative splicing
 - Skip exon 6 -> soluble form of the protein
 - Include exon 6 -> membrane -bound IL7R
- "MS-associated" C-allele results in increased soluble form of the protein -> reduced function of the protein

The IL-7 receptor

- IL7R- mediated signalling is essential for the development and survival of Tlymphocytes
- •More soluble IL7R may influence both innate and adaptive immune responses

Bevegelsesdivisjon

The Interleukin-2 receptor A gene


- IL2RA gene:
 - Located at chromosome 10p15 (total 8 exons)
 - Two associated SNPs
 - rs12722489, rs2104286 (both in intron 1)
- IL2R-mediated susceptibility effect is shared among other autoimmune diseases:
 - T1D, Graves disease, RA

Common disease mechanisms underlie different autoimmune conditions?

IL7R and IL2RA: the first definitely confirmed non-HLA susceptibility genes

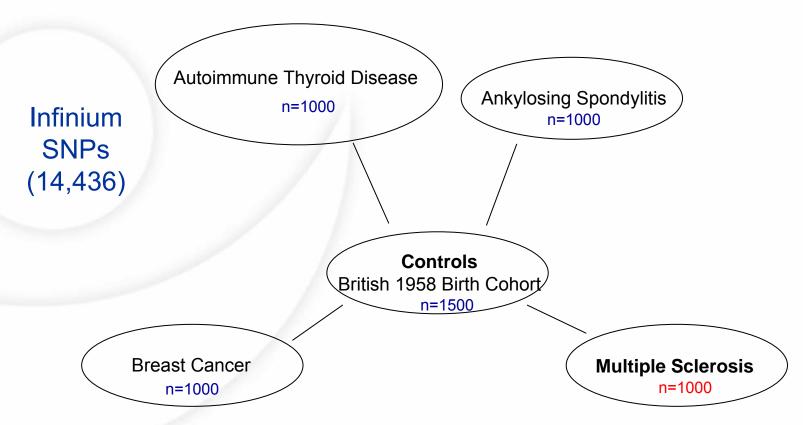
Small effects need large sample size

Power for replication OR 1.2 and p= 5 x 10⁻⁷

(Oksenberg et al. Review 2008)

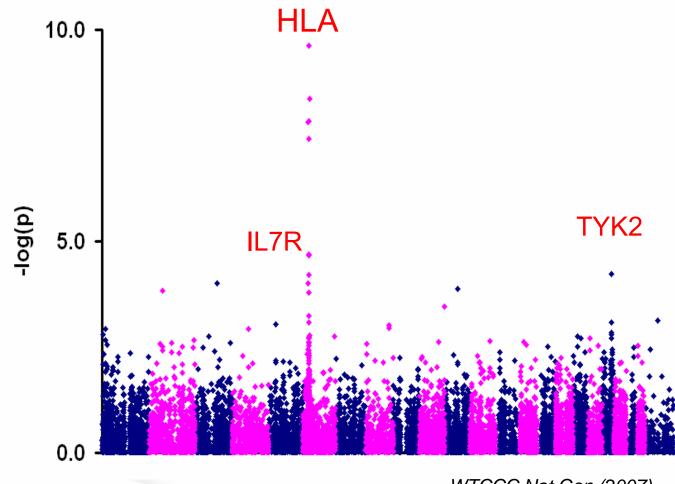
Study by IMSGC: Total 33 068 individuals (cases, controls, TRIOs)

	χ²	р	Odds ratio (95% CI)
C allele of rs6897932 (IL7	R)		
Case-control*	73-14	1-21×10 ⁻¹⁷	1-200 (1-151-1-252)
Trios†	10-33	1-31×10 ⁻⁶³	1.153 (1.057-1.258)
Tallele of rs2104286 (IL2	RA)		
Case-control*	99-12	2-38×10 ⁻²³	1-247 (1-194-1-302)
Trios†	24-67	6.80×10 ⁻⁰⁷	1-278 (1-160-1-409)
C allele of rs12722489 (IL:	2RA)		
Case-control*	62-84	2-24×10 ⁻¹⁵	1-234 (1-172-1-300)
Trios†	11.95	5-47×10 ⁻⁰⁴	1-232 (1-094-1-387)



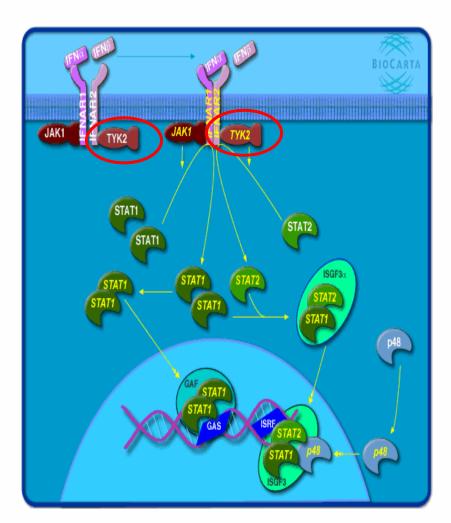
Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants

Wellcome Trust Case Control Consortium¹ & The Australo-Anglo-American Spondylitis Consortium¹



WTCCC Nat Gen (2007) 39:1329-1337

Overall results- replication of IL7R and a novel variant in the TYK2 gene



The Tyrosine kinase 2 gene

- Located at chr 19p13
- Expressed in lymphocytes and the nervous system
- TYK2 is essential in IFN-α and β signalling
- TYK2 is activated in response to various cytokines

http://www.biocarta.com/genes/index.asp

The future in MS genetics

GWAS starting now:

500k – 1mill SNPs and CNV

10-15 000 MS cases

Funded by Welcome Trust

performed by IMSGC (International Multiple Sclerosis Genetics

Consortium)

Novel variants

Replication studies, fine-mapping and functional studies

Difficulties

Resequencing approach (detect hotspots (20% of the genome))

Copy number variation (Beckmann et al. Nature 2007)

Acknowledgments

- Oslo MS genetics group
 - Hanne F Harbo
 - Åslaug R Lorentzen
 - Inger-Lise Mero
 - Cahrine Smestad
 - Elisabeth G Celius
 - Anne Spurkland
- Nordic MS genetics **Network**

- Immunogenetics of autoimmune diseases
 - Benedicte A Lie and colleagues
- **IMSGC= International MS Genetic Consortium**
 - Stephen Sawcer, UK

University of California San Francisco

???? **Candidate** gene Myelin Central nervous system (brain and spinal cord) sheath Sample size approach of healthy nerve -Axon **GWAS** @ADAM, Inc. Finmapping Copyright A.D.A.M. resequencing functional studies **Novel variants**

universitetssykehus

Bevegelsesdivisjon